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Abstract
We derive a generalization of the Kalman filter that allows for non-Gaussian
background and observation errors. The Gaussian assumption is replaced by
considering that the errors come from a mixed distribution of Gaussian, log-
normal, and reverse lognormal random variables. We detail the derivation for
reverse lognormal errors and extend the results to mixed distributions, where
the number of Gaussian, lognormal, and reverse lognormal state variables can
change dynamically every analysis time. We test the dynamical mixed Kalman
filter robustly on two different systems based on the Lorenz 1963 model, and
demonstrate that non-Gaussian techniques generally improve the analysis skill
if the observations are sparse and uncertain, compared with the Gaussian
Kalman filter.
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1 INTRODUCTION

The Kalman filter (Jazwinski, 1970; Kalman, 1960) has
been very successful in data assimilation applications due
to its simplicity. Its development offered an analytical
approach to estimate the optimal state of a dynamical
system by linearizing the model equations and measure-
ment operators, and paved the way for ensemble data
assimilation (Evensen, 1994). The major drawback of this
technique is the fact that it assumes Gaussian-distributed
background and observational errors. This Gaussian
assumption lies at the basis of many data assimilation
methods, while it generally does not hold (Bannister
et al., 2020; Foster et al., 2006; Hu et al., 2023; Perron &
Sura, 2013; Poterjoy, 2022).

As numerical models and observing systems improve,
this shortcoming is becoming more obvious, increasing

interest in developing non-Gaussian methods in recent
years. Although significant advances have been made in
this regard, most available non-Gaussian data assimila-
tion techniques still have challenges to overcome before
they can be operationally viable. Approaches based on the
particle filter (van Leeuwen, 2009) can in principle deal
with any prior distribution and likelihood, but generally
need large ensemble sizes to avoid ensemble degeneracy
(Snyder et al., 2015). Another avenue to take is to replace
the Gaussian prior and likelihood distributions explicitly
with a different probability density function (Bishop, 2016;
Fletcher & Zupanski, 2006a), where one needs a way of
deciding which is the optimal distribution to use. Simi-
larly, Gaussian anamorphosis (see, e.g., Amezcua & Van
Leeuwen, 2014; Bertino et al., 2003; Bocquet et al., 2010;
Simon & Bertino, 2009; Simon & Bertino, 2012) can be used
to transform ensembles into an approximately Gaussian
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form. This procedure can handle non-Gaussian errors, but
discards skewness information, which can lead to biases in
the analysis (Fletcher & Zupanski, 2007). Finally, hybrid
approaches have been proposed that combine a particle
filter with standard data assimilation methods (see, e.g.,
Nerger, 2022).

Due to these challenges, operational numerical
weather prediction systems are still based on Gaus-
sian prior distributions (Bannister, 2017). Two main
approaches are used: variational methods and ensemble
techniques. In the former, the negative log-likelihood of
the posterior distribution is minimized to find the opti-
mal analysis state. The latter are based on the ensemble
Kalman filter, which allows for a flow dependence of
the background-error covariance matrix, but including
enough ensemble members is computationally expensive.
To improve the forecast skill, most operational numerical
weather prediction centres use hybrid data assimilation
methods, to try to combine the best of both worlds.

In the case of lognormal errors, variational data assim-
ilation methods are already well established (Fletcher
& Zupanski, 2006a, 2006b; Fletcher, 2010, 2022) and
machine learning has been suggested as a promising way
of selecting the underlying error distribution (Goodliff
et al., 2020; Goodliff et al., 2022). Recently, Fletcher et al.
(2023) showed that it is also possible to adapt the Kalman
filter to allow for lognormal errors. This paves the way for
hybrid techniques that can assimilate variables that are
bounded from below better.

The lognormal distribution is just one of many possibil-
ities for the error distribution of state variables. It is a good
approximation for variables that are positively skewed and
have a set minimum value, such as water-vapour mixing
ratio (Kliewer et al., 2016). However, atmospheric statis-
tics can change over time and space (Foster et al., 2006;
Perron & Sura, 2013), and in particular the skewness can
be negative. One way to deal with this is to introduce
the reverse lognormal distribution, which looks like the
mirror image of a lognormal distribution, with a given
upper bound and negative skewness. The reverse lognor-
mal distribution has been successfully incorporated into
variational data assimilation (Goodliff et al., 2023), allow-
ing for a mixed distribution with Gaussian, lognormal, and
reverse lognormal random variables.

In a sense, adding the reverse lognormal distribution to
previous mixed data assimilation schemes completes the
model, making it possible to account for variables with any
skewness, positive or negative. Thus, in an effort to design
operationally viable hybrid data assimilation methods, the
mixed Kalman filter of Fletcher et al. (2023) should be
appended with the reverse lognormal distribution, which
is the motivation of this article.

We start by deriving the reverse lognormal Kalman fil-
ter in Section 2.1, where all errors are reverse lognormally
distributed. Of course, such a filter is only marginally
useful, as in any real application different distributions
are present at the same time. In Section 2.2, we out-
line the fully mixed version of the Kalman filter, which
incorporates Gaussian, lognormally, and reverse lognor-
mally distributed background and observational errors.
Moreover, we remark that the fully mixed Kalman fil-
ter is formulated in a dynamical way, where the under-
lying distribution of each state variable or observation
can change every analysis time. The details of the imple-
mentation of the new Kalman filter are presented in
Section 3, and used in Section 4 in conjunction with two
models based on the Lorenz-63 system (Lorenz, 1963) to
investigate its capabilities. Finally, we provide conclusions
in Section 5.

2 FORMULATION

The Kalman filter equations can be derived in multiple
ways (Fletcher, 2022). Here, we present a formulation
based on a least-squares approach, starting from a cost
function describing the negative log likelihood of the anal-
ysis errors. To show the details of the derivations, before
presenting the full dynamical model with mixed Gaussian,
lognormal, and reverse lognormal distribution, we derive
the reverse lognormal Kalman filter, where all errors fol-
low a reverse lognormal distribution. The extension to
the fully mixed error distribution is trivial, and will be
summarized in Section 2.2.

The derivation in this section is similar to the one pre-
sented by Fletcher et al. (2023) in the context of lognormal
errors, and the reader is referred to that work if more
details are necessary. The main difference is the use of a
different probability density function for the prior and like-
lihood distributions: the reverse lognormal distribution.
Its multivariate probability density function is given by

prl(x;𝝁,𝚺, 𝝃)

= 1
√
(2𝜋)N |𝚺|

N∏

𝑗=1

1
𝜉
𝑗
− x

𝑗

× exp
{
−1

2
[ln(𝝃 − x) − 𝝁]𝚺−1 [ln(𝝃 − x) − 𝝁]

}
.

(1)

The reverse lognormal distribution can be thought of as
a mirror image of a lognormal distribution, and has a
negative skewness. Reverse lognormal variables are semi-
bounded, with a fixed upper bound 𝜉, in contrast with
lognormal variables that have a lower bound.
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2.1 Reverse lognormal Kalman filter

The starting point for deriving the Kalman filter in a
least-squares approach is the cost function that needs to
be minimized to find the analysis state. If the background
and observational errors follow a reverse lognormal distri-
bution (Fletcher, 2022; Goodliff et al., 2023), then the cost
function is given by

Jrl(x) =
1
2
[ln(𝜉f − x) − ln(𝜉f − xb)]TP−1

f,rl

× [ln(𝜉f − x) − ln(𝜉f − xb)]

+ 1
2
[ln(𝜉o − y) − ln(𝜉o − h(x))]TR−1

rl

× [ln(𝜉o − y) − ln(𝜉o − h(x))] . (2)

Here, xb is the background state, y are the observa-
tions, h(x) is the nonlinear observation operator, trans-
forming the state variables to observation space, Pf,rl
is the forecast-error covariance matrix, and Rrl is the
observation-error covariance matrix. The parameters 𝜉f
and 𝜉o are the maximal values of the reverse lognormal
distribution for the state variables and observations respec-
tively. We furthermore denote the total number of state
variables with N, such that x and xb are vectors of size
N, while Pf,rl is an N × N matrix. The number of observed
variables is No, so y and h(x) are vectors of size No and Rrl
is a matrix of size No × No.

Note that, similar to the lognormal Kalman filter
(Fletcher et al., 2023), we need to use the cost function
for which the minimum is the median of the posterior
distribution. Although this is not always the best statis-
tic to use (Fletcher et al., 2019), it is valid in the regime
where the analysis errors are small. This is a necessary
assumption to derive the Kalman filter equations: to find
an analytical form of the minimizer of Equation 2, the gra-
dient of the cost function needs to be linearized, as will
be described below. Within this approximation (i.e., the
analysis errors are small), the use of a median-based cost
function is justified.

In contrast to the Gaussian Kalman filter, we do not
assume the forecast model to be linear. Instead, we can
define the analysis errors ea and forecast errors ef at time
t = tk as

ln
(
𝜉f − ek

a
)
= ln

(
𝜉f − xk

a
)
− ln

(
𝜉f − xk

t
)
, (3)

ln
(
𝜉f − ek

f

)
= ln

(
𝜉f − xk

f

)
− ln

(
𝜉f − xk

t
)
, (4)

with xa the analysis state (the state that minimizes the cost
function in Equation 2), xf the forecast state, and xt the
true state. The forecast state at time t = tk can be found by
letting the forecast model act upon the perturbed analysis

state at t = tk, that is,

xk
f = M

[
𝜉f − (𝜉f − xk−1

a )⊙ (𝜉f − ek−1
a )

]
. (5)

The operator ⊙ denotes the Hadamard (elementwise)
product, and M is the nonlinear model bringing the state
variables from time t = tk−1 to t = tk. The seemingly com-
plicated form of the perturbed analysis state (the argument
of the model M in Equation 5) emerges from the fact that
the errors are multiplicative with an upper bound, and can
be found by solving Equation 3 for xt. More details about
this transformation can be found in Section 3.2. With these
definitions, the forecast-error covariance matrix Pf,rl can be
calculated as

Pk
f,rl =

[
ln
(
𝜉f − ek

f

)] [
ln
(
𝜉f − ek

f

)]T + Qk
, (6)

where Q is the model-error covariance matrix, disre-
garding correlations between analysis and model errors.
In contrast to the Gaussian Kalman filter, where the
forecast-error covariance matrix is calculated by hav-
ing the linearized forecast model act directly on the
analysis-error covariance matrix, the definition of Pf,rl
relies on the nonlinear forecast model M, implicit in the
calculation of the forecast errors defined in Equation 4.
For non-Gaussian errors, there is no general way of defin-
ing a forecast-error covariance matrix equivalent to the
Gaussian definition, because the model operator does not
commute with the logarithms (Fletcher et al., 2023). This
has the added benefit of removing errors introduced by lin-
earizing the model. This also implies that the true state
xt is still present in the equations for the forecast error,
although it is generally unknown. Therefore, we have to
approximate the true state by running the analysis state of
the previous assimilation step through the forecast model:
xk

t ≈ xk
b = M(xk−1

a ). Finally, one should be aware that the
forecast-error covariance matrix defined in Equation 6 is
only an approximation to the covariance of the prior, as the
true state and exact model errors are not known.

At each assimilation time, the cost function Jrl needs to
be minimized, or, equivalently, the root of the gradient of
the cost function has to be found. Differentiating the cost
function of Equation 2 with respect to x, one finds

∇xJrl(x) = W -T
f,rl(x)P

−1
f,rl [ln(𝜉f − x) − ln(𝜉f − xb)]

−HT
x W -T

o,rl(x)R
−1
rl [ln(𝜉o − y) − ln(𝜉o − h(x))] .

(7)
Here, we have introduced the Jacobian of the obser-
vation operator Hx = ∇xh(x) (a matrix of size No × N)
and the diagonal matrices Wf,rl(x) = diag[x1 − 𝜉f, … , xN −
𝜉f] and Wo,rl(x) = diag[h1(x) − 𝜉o, … , hNo (x) − 𝜉o], arising
from the derivatives of the logarithms in the cost function.
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To find the best estimate of the analysis state, one is
interested in the solution to ∇xJrl(xa) = 0 of the form

ln(𝜉f − xa) = ln(𝜉f − xb)
+ Krl [ln(𝜉o − y) − ln(𝜉o − h(xb))] ,

(8)

with Krl, the Kalman gain matrix, of size N × No. To do this,
one needs a way of writing ln(𝜉o − h(xa)) in terms of ln(𝜉f −
xa) and the background state, by making use of the geomet-
ric tangent linear model introduced by Fletcher and Jones
(2014). Specifically, introducing the small parameter r =
ln(𝜉f − xa) − ln(𝜉f − xb), one can perform a Taylor expan-
sion for small r on the function f (r) ≡ ln {𝜉o − h[xa(r)]},
that is,

f (r) = ln
{
𝜉o − h

[
𝜉f − (𝜉f − xb)er]}

= ln(𝜉o − h(xb)) +W−1
o,rl(xb)Hxb Wf,rl(xb)

× [ln(𝜉f − xa) − ln(𝜉f − xb)] +O(r2).

(9)

Using this Taylor expansion in the gradient of the cost
function (Equation 7), one can rewrite ∇xJrl(xa) = 0 as

P−1
f,rlr = WT

f,rl(xa)HT
xa

W -T
o,rl(xa)R−1

rl

× [ln(𝜉o − y) − ln(𝜉o − h(xb))
−W−1

o,rl(xb)Hxb Wf,rl(xb)r + 𝒪(r2)].
(10)

To find this form, the small parameter r was recognized
in the first term of Equation 7, and the whole expres-
sion was multiplied by WT

f,rl from the left. Finally, note
that ro = ln(𝜉o − y) − ln(𝜉o − h(xb)) should be of a sim-
ilar order to r, assuming the observational innovations
are small. In order to keep the entire right hand side of
Equation 10 linear in r and ro, the prefactor should be
expanded as well. In other words, we want to omit all
terms of order r2, r2

o, rro, or higher in the full expression of
Equation 10. As the terms between brackets are already of
the order r or ro, the prefactor can be expanded up to zeroth
order in r:

WT
f,rl[xa(r)]HT

xa(r)
W -T

o,rl[xa(r)]

= WT
f,rl(xb)HT

xb
W -T

o,rl(xb) +O(r),
(11)

because xa(r = 0) = xb. Defining ̃Hrl = W−1
o,rl(xb)Hxb

Wf,rl(xb), Equation 10 can be written as

P−1
f,rlr = ̃HrlR−1

rl
(

ro − ̃Hrlr
)
+O(ro, r)2. (12)

Performing some additional algebra (including the use
of the Sherman–Morrison–Woodby formula; see Fletcher
(2022) and Fletcher et al. (2023) for a detailed derivation),

the analysis state can be written as

ln(𝜉f − xa) = ln(𝜉f − xb) + Pf,rl ̃Hrl

(
̃HrlPf,rl ̃H

T
rl + Rrl

)−1

× [ln(𝜉o − y) − ln(𝜉o − h(xb))] ,
(13)

such that the gain matrix of the reverse lognormal Kalman
filter is given by

Krl = Pf,rl ̃H
T
rl

(
̃HrlPf,rl ̃H

T
rl + Rrl

)−1
. (14)

This result is very similar to the gain matrix in a Gaus-
sian (Kalman, 1960) or lognormal (Fletcher et al., 2023)
framework, with the only difference being the scaling of
the Jacobian of the observation operator.

Lastly, in the Kalman filter scheme, the analysis-error
covariance matrix should be updated, in order to esti-
mate the forecast errors in the next assimilation step.
The analysis errors are defined in Equation 3, and can
be used to form the analysis-error covariance matrix by
replacing ln(𝜉f − xa) in favour of the Kalman gain matrix
through Equation 13. Using a similar Taylor expansion
to Equation 9, ln(𝜉o − h(xb)) can be written as a func-
tion of the true state xt and the background error defined
through ln(𝜉f − eb) = ln(𝜉f − xb) − ln(𝜉f − xt). In particu-
lar, Equation 9 can be used after replacing r → − ln(𝜉f − eb)
and xa → xt to find the correct Taylor expansion. With this,
the analysis error can be written as

ln(𝜉f − ea) = (I − Krl ̃Hrl) ln(𝜉f − eb)
+ Krl ln(𝜉o − eo), (15)

with ln(𝜉o − eo) = ln(𝜉o − y) − ln(𝜉o − h(xt)). Assuming
the background and observational errors are uncorrelated,
the analysis-error covariance matrix becomes

Pa,rl = (I − Krl ̃Hrl)Pf,rl(I − Krl ̃Hrl)T + KrlRrlKT
rl, (16)

which is the inverse of the scaled Hessian matrix of the cost
function, that is, Pa,rl = (WT

f,rl(xb)∇2
xJrl(xb)Wf,rl)−1.

2.2 Dynamical mixed Kalman filter

Using the results presented in the last section and combin-
ing them with the existing literature on the Gaussian and
lognormal Kalman filters (Fletcher et al., 2023; Jazwin-
ski, 1970; Kalman, 1960), it is straightforward to extend the
equations to mixed distributions, where now the error of a
specific state variable is a random variate from a Gaussian,
lognormal, or reverse lognormal distribution. The starting
point for the dynamical mixed Kalman filter is again the
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cost function, now defined as

J(x) = 1
2
(X − Xb)TP−1

f (X − Xb)

+ 1
2
(Y −H(x))TR−1(Y −H(x)). (17)

The capitalized letters represent the mixed variables

X =
⎛
⎜
⎜
⎜
⎝

x(g)

ln x(l)

ln(𝜉f − x(r))

⎞
⎟
⎟
⎟
⎠

, Xb =
⎛
⎜
⎜
⎜
⎝

x(g)b

ln x(l)b

ln(𝜉f − x(r)b )

⎞
⎟
⎟
⎟
⎠

, (18)

Y =
⎛
⎜
⎜
⎜
⎝

y(g)

ln y(l)

ln(𝜉o − y(r))

⎞
⎟
⎟
⎟
⎠

, H(x) =
⎛
⎜
⎜
⎜
⎝

h(g)(x)
ln h(l)(x)

ln(𝜉o − h(r)(x))

⎞
⎟
⎟
⎟
⎠

, (19)

where the superscripts (g), (l), and (r) depict all Gaussian,
lognormal, and reverse lognormal variables respectively,
which were sorted without loss of generality. The total
number of state variables is still N, containing ng Gaus-
sian, nl lognormal, and nr reverse lognormal components.
We allow the underlying distributions to change over time,
such that ng = ng(t), nl = nl(t), and nr = nr(t), while always
keeping N = ng + nl + nr fixed. Similarly, for the observed
variables we denote No = no

g + no
l + no

r , where the amount
of observations within a certain distribution can change
over time.

The derivation of the mixed Kalman filter equations
is very similar to the reverse lognormal filter described
above. By solving for the root of the gradient of the cost
function ∇xJ(xa) = 0 and performing an appropriate Tay-
lor expansion to linearize the equation, one finds the
mixed Kalman gain matrix as

K = Pf ̃H
T
(
̃HPf ̃H

T + R
)−1

, (20)

from which the analysis state can be calculated:

Xa = Xb + K (Y −H(xb)) . (21)

Here, the scaled Jacobian of the observation operator is
defined as ̃H = W−1

o (xb)Hxb Wf(xb), with

Wf(x) = diag
[
1ng , x(l), x(r) − 𝜉f

]
and

Wo(x) = diag
[
1no

g
,h(l)(x),h(r)(x) − 𝜉o

]
,

(22)

where 1ng denotes a vector of size ng with ones for each
element. The analysis-error covariance matrix is updated
as

Pa = (I − K ̃H)Pf(I − K ̃H)T + KRKT
. (23)

The formulation of the mixed Kalman filter is again anal-
ogous to the Gaussian, lognormal, or reverse lognormal
filters. The main difference is that it is expressed in terms of
the mixed variables, and thus also the errors are in a mixed
representation. This needs to be remembered whenever
the forecast model is used. Note that the mixed Kalman fil-
ter described here is a generalization of Kalman filters with
a certain assumption for prior distributions. For example,
taking N = ng and No = no

g (such that nl = nr = no
l = no

r =
0), a Gaussian Kalman filter is recovered. However, it
should be kept in mind that the fully nonlinear model is
used, and thus this situation coincides with a nonlinear
Gaussian Kalman filter. The details of the implementation
of the mixed Kalman filter are reported in the next section.

3 IMPLEMENTATION

The actual use of the Kalman filter in a data assimilation
setting can be partitioned into three main steps: forecast-
ing, transforming, and updating. Here, we provide details
of these different steps and how to implement the dynam-
ical mixed Kalman filter.

3.1 Forecast step

At a given time t = tk in a data assimilation cycle, one
wants to find the optimal analysis state xk

a, based on obser-
vations yk and the knowledge of the previous states at t <
tk. To use the latter information, it is necessary to propa-
gate the previous analysis state xk−1

a through the forecast
model. This defines the background state xk

b = M(xk−1
a ).

As a reminder, in contrast to the original formulation of
the Kalman filter, we use the nonlinear model M, not the
linearized version.

In order to calculate the forecast-error covariance
matrix, one also needs the forecast errors. We define the
forecast state as

xk
f = M(xk−1

a ⋆ ek−1
a ), (24)

where we introduced the short-hand notation

x ⋆ e ≡
⎛
⎜
⎜
⎜
⎝

x(g) + e(g)

x(l) ⊙ e(l)

𝜉f − (𝜉f − x(r))⊙ (𝜉f − e(r))

⎞
⎟
⎟
⎟
⎠

. (25)

This operation result from transforming the sum of two
mixed variables X + E back to the original variable repre-
sentation. Details of this transformation and a description
of the mixed variables can be found in Section 3.2. The
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forecast-error covariance matrix Pk
f is defined through the

mixed forecast errors Ek
f = Xk

f − Xk
b as

Pk
f = (E

k
f )(E

k
f )T + Qk

, (26)

where the capital letters Xf, Xb, and Ef represent the
mixed forms of xf, xb, and ef, and the overline denotes
the expected value. Note that the forecast-error covariance
matrix as defined in Equation 26 is only an approximation,
as it actually describes the errors of the forecast state with
respect to the true state. As the true state is unknown in
general, the approximation xk

t ≈ xk
b is made when calculat-

ing Pk
f .

In each assimilation window, both the previous analy-
sis state xk−1

a and the perturbed state xk−1
a ⋆ ek−1

a have to be
forecast, using the nonlinear model M. If k = 1, namely
at the beginning of the data assimilation cycle, one does
not have access to the previous analysis state and error.
One usually starts with an initial guess for the previous
analysis state x0

a. Multiple choices can be made, however,
for the initial perturbations e0

a. One possibility is to start
with random noise, where the errors are drawn from an
unbiased distribution. Alternatively, one can base the ini-
tial perturbations on a known climatology, such as in the
National Meteorological Center (NMC) method (Parrish &
Derber, 1992), where forecasts from different initial times
are compared with each other to estimate the errors.

3.2 Transform step

From the forecast step, we have access to the background
state xk

b and the forecast state xk
f . The mixed Kalman filter,

however, is defined in terms of the mixed random vari-
ables. Some sort of decision function is necessary to deter-
mine which components need to be transformed. How to
define this decision function is still an open question for
most problems, although advances have been made with
machine-learning techniques (Goodliff et al., 2020, 2022,
2023).

Assuming the decision function is known, the trans-
formation X ≡T(x) itself is straightforward: the Gaussian
components do not change X(g) = x(g), while the lognormal
variables are calculated as X(l) = ln x(l), and the reverse log-
normal variables as X(r) = ln(𝜉f − x(r)). Although the state
variables in Equation 18 are sorted with respect to their dis-
tribution for notational simplicity, this is not a necessary
condition of the mixed variables and is not required to use
the mixed Kalman filter.

A similar transformation also needs to be done in
observation space, to define the mixed random variables
Y ≡To(y) given in Equation 19. Note that the observation

operator h acts on the original (lower-case) variables
directly, and thus the transformation needs to be done after
applying h, that is, H(x) = To[h(x)]. In general, the deci-
sion function in observation space can be different from
the decision function in forecast space, that is, T ≠To.

As we will specify in the next section, the output of
the update step from the Kalman equation is always in the
mixed representation, namely one obtains Xa = T(xa) and
Ea = T(ea). In the next forecast step, one instead needs the
state variables themselves. They can easily be computed
through the inverse variable transform

x = T−1(X) =
⎛
⎜
⎜
⎜
⎝

X(g)

eX(l)

𝜉f − eX(r)

⎞
⎟
⎟
⎟
⎠

, (27)

which can be used to find xa = T−1(Xa) and ea = T−1(Ea).
The operation x ⋆ e, introduced in Equation 25, is char-
acterized through this inverse variable transform. Specifi-
cally, it is defined as x ⋆ e = T−1[T(x) +T(e)], and thus
represents a sum of mixed variables.

3.3 Update step

Finally, the mixed distributed random variables can be
used to calculate the Kalman gain matrix defined in
Equation 20, and the analysis state xk

a can be determined
through Equation 21. Moreover, the gain matrix can be
used to update the analysis-error covariance matrix Pk

a,
according to Equation 23.

In the original (Gaussian) formulation of the Kalman
filter, the analysis-error covariance matrix is propagated
directly to the next time step through the linearized fore-
cast model, to define the forecast-error covariance matrix
Pk+1

f . However, because the model operator M and the
variable transform T do not commute, this is not possible
here, and instead we define the forecast-error covariance
matrix from the forecast errors ef directly, as described in
Section 3.1. Thus, instead of calculating Pa, we calculate
the analysis errors directly as

Ea = (I − K ̃H)Ef + KEo, (28)

with Eo the observation error. Note that the analysis-error
covariance matrix (see Equation 23) can be calculated as
Pa = EaET

a , assuming the forecast and observation errors
are uncorrelated. After performing the inverse variable
transform, described in Section 3.2, the analysis state
and errors can be used to compute the forecast state
for the next time step, using Equation 24, and the cycle
repeats.
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4 RESULTS

To test the implementation of the dynamical mixed
Kalman filter, we perform some experiments with a toy
model. We choose the Lorenz-63 model (Lorenz, 1963),
which has been shown to contain lognormal and reverse
lognormal signals (Goodliff et al., 2020; 2022; 2023). The
governing differential equations are given by

⎧
⎪
⎪
⎨
⎪
⎪
⎩

dx
dt
= 𝜎(y − x),

dy
dt
= 𝜌x − y − xz,

dz
dt
= xy − 𝛽z,

(29)

with x = (x, y, z) the state variables and (𝜎, 𝜌, 𝛽) =
(10, 28, 8∕3) the parameters of the model, which have been
chosen to reflect chaotic behaviour. According to Goodliff
et al. (2020), the x and y components of the Lorenz-63
system satisfy the Gaussian assumption, while z changes
distributions over time, switching between Gaussian, log-
normal, and reverse lognormal errors, making this an
ideal system to test the dynamical mixed Kalman filter.

4.1 Decision function

In order to assess the dynamical features of our mixed
Kalman filter, a decision function is necessary to select
the correct distribution to use for the z component at
every assimilation step. We follow a technique similar
to the one developed by Goodliff et al. (2022), based on
machine-learning methods.

First, a long control run for t ∈ [0, 1000] is generated
from the initial conditions x0 = (−3,−3, 20)with time step
dt = 0.01. The first 100 time steps are removed to account
for spinup. At a given time tk, the skewness of the z vari-
able is computed by performing a skewness test on the
sample {zk−w

, … , zk
, … zk+w}, with w the sample win-

dow radius determining the number of values used for
the skewness test. In the results shown in this section, we
use w = 14.

The skewness test is a two-sided hypothesis test, with
the null hypothesis being that the skewness of the sample
is zero (the skewness of a Gaussian distribution). It out-
puts a z-score expressing the deviation of the skewness of
the sample from the skewness of a Gaussian distribution
(no skew). We use a significance level of 𝛼 ≃ 0.3, reject-
ing the null hypothesis if the z-score is outside the domain
[−1, 1]. If the z-score is larger than 1, we assume the errors
of the z variable of the Lorenz model to be lognormally dis-
tributed; when it is smaller than −1, we assume a reverse
lognormal distribution; if the null hypothesis is accepted,

Gaussian errors are assumed. The significance level is cho-
sen in order to produce enough cases where lognormal
and reverse lognormal errors are predicted, and is repro-
duced from Goodliff et al. (2022). For example, for 𝛼 = 0.3,
the z component behaves lognormally about 40% of the
time and reverse lognormally about 15% of the time. This
threshold could be optimized for better performance of the
machine-learning model, but this goes beyond the scope
of the current work.

Once the data are divided into these three bins (Gaus-
sian, lognormal, and reverse lognormal, based on the
skewness test), we train a k-nearest-neighbour algorithm
to detect the underlying distribution without the need
for the skewness test and the knowledge of z at multiple
time steps. This is a classification algorithm that makes a
decision boundary from a majority vote of the k nearest
neighbours from the training data. In particular, we use
the k-nearest-neighbour algorithm from scikit-learn
(Pedregosa et al., 2011), with k = 15 and inverse-distance
weights. The training input data are the randomized and
standardized time series of the x and y components of
the Lorenz model, and the training output is the underly-
ing distribution of the z variable, decided by the skewness
test. We keep 30% of the original control run for test-
ing, to find an accuracy of 98.7% in predicting the correct
distribution.

Once the machine-learning algorithm is trained, it can
be used to predict the underlying error distribution of the z
variable, based on the input of x and y at a given time, and
can thus be used as the decision function. The advantage
of the k-nearest-neighbour algorithm is that it is incredi-
bly fast, both in training and in predicting, such that the
extra computational time for deciding the z-distribution is
minimal.

4.2 Twin experiments

Now that we have all the ingredients, it is possible to eval-
uate the accuracy of the dynamical mixed Kalman filter.
To do so, we perform twin experiments with the Lorenz-63
model repeatedly to estimate the robustness of the pro-
posed filter. For each assimilation cycle, the following steps
are executed.

(i) Generate the true state xt by integrating the
Lorenz-63 model from t = 0 to t = tmax from initial
condition x0.

(ii) Generate artificial observations by sampling from a
distribution with mode xt and standard deviation 𝜎x.

(iii) Apply the Kalman filter to the observations from
some initial state x0,DA.
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(iv) Calculate the root-mean-square error RMSE =[
1

Na

∑Na
k=1(x

k
a − xk

t )
2
]1∕2

.

Each run contains Na = 250 assimilation times (and
thus observations), and we repeat the experiment Nc = 50
times. In the end, the average root-mean-square error is
taken over all runs

RMSE = 1
Nc

Nc∑

𝑗=1
RMSE

𝑗
,

to conclude with a single value characterizing the accuracy
of the filter. Note that, for lognormal and reverse lognormal
errors, the root-mean-square error might not be the ideal
statistic to use. However, because the error distributions
are allowed to change over time, there is not one best per-
formance indicator available, which is why we stick to the
simple root-mean-square error here, providing an estimate
of the accuracy.

To generate the true state, we start from the initial con-
dition x0 = (−5,−6, 22) + G(0, 1), where G(𝜇, 𝜎) denotes a
vector of random Gaussian variables with mean 𝜇 and
standard deviation 𝜎. Similarly, we start the data assim-
ilation algorithm by perturbing the true initial condition
x0,DA = x0 + G(0, 1).

The observations are made by measuring all state vari-
ables directly, that is, h(x) = x and y = (xo, yo, zo). The x
and y components of the Lorenz model are assumed to
be Gaussian, such that their observed values are drawn
from a Gaussian distribution around the true state xt =
(xt, yt, zt) as xo = G(xt, 𝜎x) and yo = G(yt, 𝜎y). To decide
which distribution to sample zo from, we use the trained
machine-learning model, with the true state as input. In
that way, the chosen underlying distribution most closely
follows the true distribution. Thus, the observed value
of z is either zo = G(𝜇(g)z , 𝜎

(g)
z ), zo = L(𝜇(l)z , 𝜎

(l)
z ), or zo =

R(𝜇(r)z , 𝜎

(r)
z ), with L(𝜇, 𝜎) a random lognormal variable and

R(𝜇, 𝜎) a random reverse lognormal variable. The means
and standard deviations are chosen in such a way that the
true state zt lies at the mode m of the distribution. For
the Gaussian case, this is simply 𝜇

(g)
z = zt and 𝜎

(g)
z = 𝜎z.

In the case of lognormal errors, the mode of the distribu-
tion can be shown to be m = e𝜇−𝜎2 , while the variance is
𝜎

2
z = e2𝜇+𝜎2(e𝜎2 − 1). Setting m = zt, 𝜇 = 𝜇

(l)
z , 𝜎 = 𝜎

(l)
z , and

rearranging the equations to find 𝜇

(l)
z and 𝜎

(l)
z , one finds

𝜇

(l)
z = ln(ztr) and 𝜎

(l)
z =

√
ln r, where is r is the single real

root larger than 1 of the equation1r4 − r3 − 𝜎

2
z∕z2

t = 0. Sim-
ilarly, for reverse lognormal errors, 𝜇(r)z = ln[(𝜉f − zt)r] and

1An analytic solution for r is available, but too lengthy to write down
here.

𝜎

(r)
z =

√
ln r, where is r is the single real root larger than 1

of the equation r4 − r3 − 𝜎

2
z∕(𝜉f − zt)2 = 0.

To test different cases, we vary two different vari-
ables: 𝜎 ≡ 𝜎x = 𝜎y = 𝜎z, the observation error of all vari-
ables (which also defines the observation-error covariance
matrix as R = diag[𝜎2

, 𝜎

2
, 𝜎

2]) and the observation period
𝜏o, fixing the amount of time between observations. More-
over, six different Kalman filters are validated, based on the
error distribution of the z component in the data assimila-
tion method. The x and y components are always assumed
to be Gaussian, while the z component is

a. Gaussian ∀t,
b. lognormal ∀t,
c. reverse lognormal ∀t,
d. Gaussian – lognormal,
e. Gaussian – reverse lognormal,
f. Gaussian – lognormal – reverse lognormal,

where, for the last three methods (d)–(f), the
machine-learning decision function is used to switch
dynamically between distributions. As we are interested
in the performance of the mixed schemes, we compare
the root-mean-square errors of the five mixed filters
(b)–(f) with the all-Gaussian method. We use the fixed
model-error covariance matrix derived by Evensen and
Fario (1997) in all experiments. Note that in method (a)
the forecast model is still considered to be nonlinear, in
contrast to the original formulation of the Kalman filter
(Jazwinski, 1970; Kalman, 1960), such that the effects
of linearizing the model are avoided in comparing the
different methods. For a comparison with the linearized
(extended) Gaussian Kalman filter, the reader is referred
to Fletcher et al. (2023).

In Figure 1, results are shown for the relative
root-mean-square errors of the different Kalman filters,
varying 𝜎 and 𝜏o. In Figure 1a, the root-mean-square error
of the Gaussian Kalman filter is presented. As is expected,
RMSE grows when either 𝜎 or 𝜏oincreases. The Gaussian
filter is used as a baseline to compare the other filters with,
shown in Figure 1b–f according to the different distribu-
tions of z explained above. A two-sided F-test2 is used to
test the significance of the calculated root-mean-square
errors relative to the Gaussian filter, with a null hypoth-
esis that the root-mean-square errors are the same and a
significance level of 𝛼 = 10−4.

Overall, the mixed filters generally outperform the
Gaussian filter, except for some specific cases. For small 𝜏o

2To use this test, we need to assume that absolute errors of the different
filters are Gaussian with the same variance. This is not necessarily true,
but, similarly to why we chose to compare root-mean-square errors, it
gives an estimate of the performance of mixed Kalman filters.
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F I G U R E 1 Root-mean-square error (RMSE) of different Kalman filters for different values of the observation error 𝜎 and the
observation period 𝜏o for the Lorenz-63 model. In (a), the RMSE for the Gaussian Kalman filter is shown. The other panels show the RMSE
relative to the Gaussian RMSE for different distributions of the z component: (b) lognormal ∀t; (c) reverse lognormal ∀t; (d)
Gaussian – lognormal decided by machine-learning model; (e) Gaussian – reverse lognormal decided by machine-learning model; (f)
Gaussian – lognormal – reverse lognormal decided by machine-learning model. The circles and crosses show the parameters that perform
significantly better or worse than the Gaussian filter respectively, based on a two-sided F-test with 𝛼 = 10−4. [Colour figure can be viewed at
wileyonlinelibrary.com]

and 𝜎, the lognormal (b) and reverse lognormal (c) filters
have higher RMSE, mainly because (reverse) lognormal
signals in the background do not develop yet on these
small timescales and a Gaussian approximation describes
the evolution well. Moreover, for small observation errors
the Gaussian Kalman filter performs very well, and not
much improvement is possible. In isolated cases [see, for
example, Figure 1b for 𝜏o = 160 dt and 𝜎

2 = 3.5], there is
an instance where the filter failed to converge, resulting in
a high RMSE, as also reported in Fletcher et al. (2023).

Using the machine-learning model to switch between
distributions (d)–(f) solves these problems by only using
(reverse) lognormal updates when necessary. In all but one
case, the dynamical Kalman filters (d)–(f) outperform the
Gaussian filter, whenever the variation is significant. The
dynamical filter switching between the three distributions
(f) generally outperforms the filters where only two distri-
butions are used, (d) and (e). It should be noted that the
results are dependent on the choice of model-error covari-
ance matrix, which we have taken to be the same for all
filters. For the mixed filters, the model error dominates for
small 𝜎, resulting in large perturbations in the background
state, which may affect the performance at small 𝜎.

To show explicitly the improvement of using lognor-
mal or reverse lognormal updates, Figure 2 presents an
example of a specific twin experiment. There, we compare
the fully Gaussian Kalman filter (a) with the fully dynam-
ical Kalman filter (f). As before, the x and y components
are always assumed to have Gaussian priors and likeli-
hoods, while the z component switches between the three
distributions considered. The observations are generated
artificially from the true state and change distributions
according to the machine-learning model applied on that
true state. This can be seen in the bottom panel of Figure 2,
where the filled circles show the distribution from which
the observations are sampled. The circles are surrounded
by an open circle, which shows the predicted distribution
at the assimilation time, based on the observation itself.
As can be seen, in three cases (t = 2, 2.4, and 7.2), the
machine-learning model incorrectly predicts a Gaussian
error, when the observation was actually generated from a
lognormal or reverse lognormal distribution.

Still, the dynamical Kalman filter (red dashed lines)
outperforms the Gaussian filter (blue dotted lines) in this
specific scenario. In particular, after t = 3.2, both back-
grounds start to diverge from the true solution. At t = 3.6, a

http://wileyonlinelibrary.com
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F I G U R E 2 Example of a twin experiment with the
dynamical Kalman filter with the Lorenz-63 model for 𝜎2 = 3 and
𝜏o = 40 dt. Grey lines show the true solution, blue dotted lines the
background from the Gaussian Kalman filter, and red dashed lines
the background from the fully mixed Kalman filter, with the
machine-learning model selecting the underlying distribution.
Filled circles show the artificial observations, sampled from a
distribution selected by the machine-learning model. Open circles
show the predicted distribution at the analysis time, which does not
always match the correct underlying error distribution. [Colour
figure can be viewed at wileyonlinelibrary.com]

lognormal observation is available, which is predicted cor-
rectly by the machine-learning model and brings the back-
ground back towards the true state. However, the Gaussian
filter does not use the correct underlying statistics, such
that it is unable to bring the background back towards the
truth. The same phenomenon can be seen at later times,
where the dynamical filter is able to assimilate lognormal
errors correctly, while the Gaussian filter diverges from the
true state. Only when enough Gaussian observations are
available does the Gaussian filter converge back to the true
solution.

To elucidate the improvements of the non-Gaussian fil-
ters further, we also perform experiments where only the
x and y components of the Lorenz-63 model are observed,
that is, h(x) = (x, y). To also test the robustness with respect

to specific conditions of the machine-learning model, we
use a significance level of 𝛼 = 0.2 for the skewness test
(rejecting the null hypothesis if the z score is outside the
domain [−1.28, 1.28]) and take a sample window size of
w = 12. The rest of the experimental details are identical
to the experiments outlined above.

The results are shown in Figure 3 for different
values of 𝜏o and 𝜎. As can be seen, the dynamical
Kalman filter (solid brown bars) always outperforms the
Gaussian Kalman filter (hatched red bars), with par-
ticularly significant improvement at larger observation
variances.

4.3 Coupled Lorenz system

Because the Lorenz-63 system is very simple, and only has
a single variable that seems to follow non-Gaussian statis-
tics, it is not possible to use it to assess the full strength
of the mixed Kalman filter, where all three distributions
are present at a single assimilation time. To overcome
this, we build a higher-dimensional system by creating a
chain of Lorenz-63 systems, with the possibility of cou-
pling between the different attractors, similar to Akhmet
and Fen (2015). These coupled differential equations then
have the form

⎧
⎪
⎪
⎨
⎪
⎪
⎩

dx𝓁
dt
= 𝜎(y𝓁 − x𝓁) + cxx𝓁+1,

dy𝓁
dt
= 𝜌x𝓁 − y𝓁 − x𝓁z𝓁 + cyy𝓁+1,

dz𝓁
dt
= x𝓁y𝓁 − 𝛽z𝓁 + czz𝓁+1,

(30)

with 𝓁 ∈ {1, … ,np} an index selecting the attractor and
npthe number of attractors. Moreover, we assume the total
system to be cyclic, such that xnp+1 = x1, ynp+1 = y1, and
znp+1 = z1. The state vector x has N = 3np elements, three
variables for each attractor, and Equation 30 expresses
a system of N coupled differential equations. We again
choose (𝜎, 𝜌, 𝛽) = (10, 28, 8∕3), and perform experiments
for np = 10 and weak coupling c ≡ cx = cy = cz = 0.1.

The experiments performed with the coupled Lorenz
system are very similar to the ones for the three-variable
Lorenz system described above. Every separate Lorenz
attractor in the chain starts from different initial condi-
tions, chosen to be x𝓁,0 = −5 + G(0, 3), y𝓁,0 = −6 + G(0, 3),
and z𝓁,0 = 22 + G(0, 3). The data assimilation run is initi-
ated with x0,DA = x0 + G(0, 1).

A decision function is again defined through
a machine-learning model based on the k-nearest-
neighbour classifier. Because the different attractors
have the same general behaviour, the machine-learning
model can be trained on only one location 𝓁 = 1 and

http://wileyonlinelibrary.com
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F I G U R E 3 Root-mean-square errors of different Kalman filters for different values of the observation variance 𝜎

2 and the observation
period 𝜏o for the Lorenz-63 model, observing the x and y components only. The different bars depict different choices for the prior
distribution of the z component: (a) Gaussian ∀t; (b) lognormal ∀t; (c) reverse lognormal ∀t; (d) Gaussian – lognormal decided by
machine-learning model; (e) Gaussian – reverse lognormal decided by machine-learning model; (f) Gaussian – lognormal – reverse
lognormal decided by machine-learning model. [Colour figure can be viewed at wileyonlinelibrary.com]
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F I G U R E 4 Root-mean-square error of different Kalman filters for different values of the observation error 𝜎 and the observation
period 𝜏o for the coupled Lorenz-63 model with np = 10 and c = 0.1. In (a), the root-mean-square error for the Gaussian Kalman filter is
shown. The other panels show the root-mean-square error relative to the Gaussian root-mean-square error for different distributions of the z𝓁
components: (b) lognormal {z1, … , z5} and reverse lognormal {z6, … , z10} ∀t; (c) Gaussian – lognormal – reverse lognormal decided by
machine-learning model. The circles and crosses show the parameters that perform significantly better or worse than the Gaussian filter,
respectively, based on a two-sided F-test with 𝛼 = 10−4. [Colour figure can be viewed at wileyonlinelibrary.com]

used for all locations. Thus, the machine-learning model
is trained on x1 and y1 as input and the skewness of
z1 as output, with the same parameters as before, i.e.
time t ∈ [0, 1000], time step dt = 0.01, skewness sample
window w = 14, significance level 𝛼 ≃ 0.3, neighbours
k = 15, and inverse-distance weights. The model pre-
dicts the correct skewness 97.7% of the time, tested on
a randomized 30% sample of the original control run.
The resulting decision function is used both to gener-
ate artificial observations [by deciding the distribution
to sample yz𝓁 from, with h(x) = x] and to select the dis-
tribution to use at each assimilation time in the mixed
Kalman filter.

We again compute the average root-mean-square error
RMSE for Nc = 50 trials and Na = 250 assimilation win-
dows for different observation errors 𝜎 (assuming all state
variables have the same standard deviation) and observa-
tion periods 𝜏o. We always assume x𝓁 and y𝓁 to be Gaus-
sian, and test three different scenarios for the distributions
of z𝓁:

a. Gaussian {z1, … , z10} ∀t;
b. lognormal {z1, … , z5} and reverse lognormal
{z6, … , z10} ∀t;

c. Gaussian – lognormal – reverse lognormal decided by
machine-learning model.

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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The all-Gaussian method is used as a baseline to com-
pare the other methods with. In scenario (b), we seemingly
arbitrarily chose the first five attractors to behave lognor-
mally and the last five to behave reverse lognormally. We
have tested different variations of selecting five lognormal
and five reverse lognormal z𝓁components, with similar
results, so the conclusions are robust to this choice. In sce-
nario (c), only information of x𝓁 and y𝓁 is needed to predict
the distribution of z𝓁 , and thus the attractors are assumed
to be independent when making this decision.

The results for the coupled Lorenz-63 model are
summarized in Figure 4, where in Figure 4a the
root-mean-square error of the Gaussian filter is shown;
this is used as a comparison for the mixed filters in
Figure 4b,c. Again, a two-sided F-test is used to investigate
the significance of the variations between the Gaussian
and mixed filters, with a significance level of 𝛼 = 10−4.
The mixed Kalman filters only perform worse than the
Gaussian filter for small 𝜏o and 𝜎. The main reason for
the decreased performance of the dynamical filter can be
attributed to the machine-learning model, as it has not
been optimized for the coupled system and may therefore
predict incorrect distributions. Moreover, the model error
remains fixed for the entire data assimilation run and
dominates the errors at small values of 𝜎. For larger 𝜏o and
𝜎, the mixed Kalman filters always perform better than
the Gaussian one.

5 CONCLUSION

We have derived a dynamical mixed Kalman filter that
accounts for background and observation errors that orig-
inated from a mixed distribution of Gaussian, lognormal,
and reverse lognormal random variables. This generalizes
the earlier work of (Fletcher et al., 2023), where the log-
normal Kalman filter was introduced, now allowing for
variables with negative skewness. An important aspect of
the mixed Kalman filter is that it makes use of the nonlin-
ear model, therefore eliminating any errors introduced by
linearizing the model.

To test the performance of the dynamical mixed
Kalman filter, we performed twin experiments with two
different toy systems based on the Lorenz-63 model. If
the time between observations is long and their errors
are large, the dynamical mixed Kalman filter significantly
improves the analysis skill over an all-Gaussian approach
in the parameter space that was examined.

Our work makes an important step towards creat-
ing operationally viable data assimilation systems with
skewed state variables that have upper and/or lower
bounds. Specifically, the mixed Kalman filter equations
can be used to develop non-Gaussian ensemble methods,

for example by extending the maximum-likelihood ensem-
ble filter (Zupanski, 2005) to accommodate non-Gaussian
errors. In conjunction with similar non-Gaussian varia-
tional methods that use a mixed distribution of Gaus-
sian, lognormal, and reverse lognormal random variables
(Goodliff et al., 2023), this moreover creates the possi-
bility to design hybrid non-Gaussian data assimilation
techniques in the future.
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